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A Recursive Algorithm for Generating the Equations of Motion 
of Spatial Mechanical Systems 

with Application to the Five-Point Suspension 
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Department of  Mathematics, College of  Science, King Saud University, 
(Al-Qasseem Branch), P.O.Box 237, Buraidah 81999, KSA 

In this paper, a recursive formulation for generating the equations of motion of spatial 

mechanical systems is presented. The rigid bodies are replaced by a dynamically equivalent 

constrained system of  particles which avoids introducing any rotational coordinates. For  the 

open-chain system, the equations of  motion are generated recursively along the serial chains 

using the concepts of linear and angular momenta. Closed-chain systems are transformed to 

open-chain systems by cutting suitable kinematic joints and introducing cut- joint  constraints. 

The formulation is used to carry out the dynamic analysis of mult i - l ink five-point  suspension. 

The results of the simulation demonstrate the generality and simplicity of the proposed dynamic 

formulation. 

Key Words  : Mult ibody System Dynamics, Equations of Motion, System of Rigid Bodies, 

Mechanisms, Machine Theory 

N o m e n c l a t u r e  

d,-,~ : Distance between points i and j 

G1 : Vector sum of  the moments of  the external 

forces and force couples acting on the body 

with respect to particle l 

I¢~, I~ ,  I~  : Moments of inertia of the body with 

respect to the body attached coordinate 

frame 

Ie~, 1¢~, 1~: Products of inertia of  the body with 

respect to the body attached coordinate 

frame 
m : Mass of the body 

mi : Mass of particle i 
m~,j ; Mass of the secondary particle that is locat- 

ed between the primary particles i and j 

; The position vector of  the centre of mass of 

the body with respect to the body attached 

coordinate frame 

~c 

f'i : Position vector of  particle i with respect to 

the body attached coordinate frame 

ri ,  1 ~, Fi : Position, velocity, and acceleration vec- 

tors of  particle i with respect to an inertial 

reference frame 

ri,j, r;.j, P;.j : Relative position, velocity, and acc- 

eleration vectors between particles i and j 

rrr~: Algebraic notation denotes the dot product 

operation (ri, r j)  

~ir~: Algebraic notation denotes the cross prod- 

uct operation (rocr~) 

R : Vector sum of  the external forces acting on 

the rigid body 
~i, r/i, ~'~ : Coordinates of  particle i with respect 

to the body attached coordinate frame 

1. I n t r o d u c t i o n  

* E-mail: ahl 113@yahoo.com 
TEL : +966-6-3800319; FAX : +966-6-3800911 
Department of Mathematics, College of Science, King 
Saud University, (AI-Qasseem Branch), P.O.Box 237, 
Buraidah 81999, KSA. (Manuscript Received March 4, 
2002; Revised September 12, 2004) 

There are different formulations for the dy- 
namic analysis of  spatial mechanisms which de- 

pend on the system of coordinates used and in the 
way the kinematic constraint equations are intro- 

duced (Denavit and Hartenberg, 1955 ; Sheth and 
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Uicker, 1972; Orlandea et al., 1977; Nikravesh, 

1988). Each formulation has its own advantages 

and disadvantages depending on the application 

and the requirements. Some formulations are 

developed using a two-step transformation which 

leads to a system of equations of motion in matrix 

form. One method (Kim and Vanderploeg, 1986 ; 

Nikravesh and Gim, 1989) uses initially the ab- 

solute coordinate formulation where the location 

of  each rigid body in the system is described in 

terms of a set of translational and rotational coor- 

dinates. However, this formulation has the disad- 

vantage of the large number of coordinates defin- 

ed. Then, the equations of motion are expressed in 

terms of  the relative joint  variables which deter- 

mine the location of  each body with respect to 

the adjacent body and they depend on the type of 

the kinematic joint  connecting the two bodies. 

Another method uses initially the point coordi- 

nate formulation in which a dynamically equiva- 

lent constrained system of particles replaces the 

rigid bodies (Attia, 1993; Nikravesh and Affifi, 

1994; Attia, 1998). The global motion of  the 

constrained system of particles together with the 

constraints imposed upon them represent both 

the translational and rotational motions of the 

rigid body. The external forces and couples acting 

on the body are distributed over the system of 

particles. Due to the large number of  differen- 

t ial-algebraic equations, the equations of motion 

which are expressed in terms of the Cartesian 

coordinates of  the particles are rederived in terms 

of  the relative joint  variables. The main disadvan- 

tage of this two-step transformation is the neces- 

sity to transform at every time step from the joint  

variables to the original system which is com- 

putationally inefficient. 

In this paper, a recursive formulation for gen- 

erating the equations of motion of spatial mec- 

hanical systems is presented. The method is based 

upon the idea of replacing the rigid body by its 

dynamically equivalent constrained system of par- 

ticles discussed in (Attia, 1993; Nikravesh and 

Affifi, 1994) with essential modifications and im- 
provements. The concepts of the linear and angu- 

lar momenta are used to formulate the rigid body 

dynamical equations. However, they are express- 

ed in terms of the rectangular Cartesian coor- 

dinates of the equivalent constrained system of  

particles. This groups the advantages of the au- 

tomatic elimination of the unknown internal 

forces as in Newton-Euler  formulation which 

results in a reduced system of differential-alge- 

braic equations. Also, it expresses the general mo- 

tion of the rigid body in terms of  a set of  Car- 

tesian coordinates without introducing any rota- 

tional coordinates and the corresponding rota- 

tional transformation matrices and eliminates the 

necessity of distributing the external forces and 

couples over the particles. For  the open-chain 

system, the equations of motion are generated 

recursively along the serial chains instead of  

the matrix formulation derived in (Attia, 1993; 

Nikravesh and Affifi, 1994). For  the closed-chain 

system, the system is transformed to open-chain 

system by cutting suitable kinematic joints and 

introducing the cut- joint  kinematic constraints. 

Then, the formulation is applied to study the 

dynamic analysis of the mult i - l ink five-point 

motor-vehicle suspension. The results of the si- 

mulation demonstrate the generality and simplic- 

ity of the proposed method. 

2. The D y n a m i c  Formulat ion 

2.1 Construction of the equivalent system of 
particles 

The rigid body and its dynamically equivalent 

constrained system of particles should have the 

same mass, the same position of the centre of mass 

and the same inertia tensor with respect to a body 

attached coordinate frame. A system of ten par- 

ticles is chosen to replace the rigid body as shown 

in Fig. 1. It should be pointed out that only four 

particles I, ..., 4, which are denoted as primary 

particles, can dynamically replace the rigid body 

(Attia, 1993 ; Nikravesh and Affifi, 1994). How- 

ever, addit ional six particles 5, .-., 10, which are 

denoted as the secondary particles, each is located 

at the midpoint  between a pair  of primary par- 
ticles. The reason for introducing the secondary 

particles is to avoid the solution of  non-l inear  

algebraic equations due to the quadratic form of  
the second moment. The mass distributions to 
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Fig. 1 The rigid body system wity an equivalent 
system of ten particles 

points must satisfy the following conditions 

I0 

m = ~ m i  (1.1) 

10 

mfa  = ~, mif ,  (1.2) 
i = l  

10 
/ u  = ~ m, (~'~2 + r/~) (1.3) 

10 
I~  =/=~ m,-($2+ ~, .2 ) (1.4) 

a0 
I~  = .__~1 mi ($2 + r/~) (1.5) 

10 

I,~= ~=lmi¢irli (1.6) 

I0 

I,~= ~=lmi~,~i (1.7) 

10 

Iol= ~=xm,~irli (1.8) 

where m is the mass of  the body, rc  is the 
position vector of  the centre of  mass of  the body 
with respect to the body attached coordinate 
frame, I¢,, I~,  I~ are the moments of  inertia of  
the body with respect to the body attached coor- 
dinate frame, I,~, I~, l~  are the products of  
inertia of  the body with respect to the body 
attached coordinate frame, m~ is the mass of 
particle i, and ri is the position vector of  particle 
i with respect to the attached coordinate frame. 
Equation (1) represents a lO × lO linear system of 
algebraic equations in 10 unknown masses of the 
primary and secondary particles. 

2.2 Equations of motion of a single rigid 
body in spatial motion 

For the equivalent system of particles, the force 
and moment equations take the form [10] 

10 

R= ~= m,V, (2) 

w h e r e  R is the vector sum of the external forces 
acting on the rigid body and i~i is the acceleration 
vector of  particle i. Also, the angular momentum 
equation for the whole system of particles with 
respect to particle 1 results in (Goldstein, 1950) 

10 10 

Gl= i~= mir ~lxV ,= ~= m,~ ,.l~ , (3) 

where Gx is the vector sum of the moments of  
the external forces and force couples acting on 
the body with respect to particle 1 and r;.1 is the 
relative position vector between particles i and 1. 
The distance constraints between the ten particles 
are given as 

r 2 d~.l - -0 (4.1, 2) rzar2 ,1- -  d~.a = 0 ,  r 2 _ r4.tr4A -- 

T 2 0 T 2 r4.2r4.z-d~.2- , r s . l r s a - d ~ a  = 0  (4.3, 4) 

T 2 2 -- rs,2rs,2-- d~.l =0 ,  r r3,4r3.4- d~,4 - 0  (4.5, 6) 

rs--  ( r~+r2) /2=0 ,  r6-- ( r l + r s ) / 2 = 0  (4.7, 8) 

rT-- ( r~+r4) /2=0 ,  rs--  ( r 2 + r 3 ) / 2 = 0  (4.9, 10) 

r g -  ( r2+r4 ) /2=0 ,  rx0-- ( r 3 + r 4 ) / 2 = 0  (4.11, 12) 

The equations of motion (2), (3) and (4) repre- 
sent a system of differential-algebraic equations 
that can be solved to determine the unknown 
acceleration vectors i~ of the particles at any 
instant of  time. However, due to the large number 
of the geometric constraints the integration of 
these equations is inefficient. In the following 
section, some useful geometrical relationships are 
used to eliminate the majority of  these constraints. 

2.3 The reduced form of the equations of 
motion of a single rigid body 

The reduced form of the equations of  motion 
can be achieved in two steps. First, the secondary 
particles and their unknown accelerations can be 
easily eliminated by substituting the constraint 
Eqs. (4.7) to (4.12) into Eqs. (2) and (3) to 
obtain 
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where 

4 
R = ~ , ~ ,  (5) 

i=1 

4 
G 1 :  ~Iii~i (6) 

i=1 

4 i 
ff~i = m~ +a~=IT mi.s (7) 

4 1 
A,.= ff~,,1 + ~ - T  m~j~,l (8) 

4 1 
~ = m ~ +  ~ -  m~j ( 9 )  

and where m~,~ denotes the mass of the secon- 
dary particle that is located between the primary 
particles i and j (ml.z=ms, ... etc.). Then, Eqs. 
(5) and (6) in addition to the remaining con- 
straints Eqs. (4.1) to (4.6) represent the equa- 
tions of motion for a single rigid body where only 
the primary particles stay. It should be pointed 
out that, in the case of  a spatial rigid body with 
planar mass distribution, only three primary par- 
ticles are replacing the rigid body and the 
equations of  motion have identical form to Eqs. 
(5)-(9) ,  but with upper limit of  3 instead of  4 
for the summations. Similar treatment can be 
done for the rigid rod in spatial motion with two 
primary particles at both ends and one interme- 
diate secondary particle. 

A more reduced set of equations of motion can 
be derived by expressing the position vector of 
one of the primary particles in terms of  the posi- 
tion vectors of the other three primary particles. 
We choose to express the coordinates of particle 
3 in terms of  the coordinates of  particles 1, 2, 
and 4. As shown in Fig. 2, four invariant quanti- 
ties ,~, v, /z, and ? can be estimated with the aid 
of the constraint Eqs. (4.4) to (4.6) that fix the 
distances between particle 3 and particles 1, 2, 
and 4 respectively. The invarient quantities take 
the form 

rs, lrz.lr4,1 I 2 = I " -  

;=1 rs.1 I 

(10.1) 

(10.2) 

3 

4 

Fig. 2 The rigid body system with its equivalent 
primary particles indicating the invarient 
quantities 

I r,a II fzarsa I 
~ :  [fs, lr,,21 (10.3) 

r=l  r4a I--/~ (10.4) 

where 

- rz, lr4,1 
rs, l-----rs,1--A [ I~2,1r4,1 l 

Knowing the initial Cartesian coordinates of the 
primary particles, the invariant quantities are de- 
termined using Eqs. (10). In terms of these in- 
variant quantities, the position vector of particle 3 
is expressed as 

rz,lr4,___~i ~_~ ~T4,1 ~- ~T2,1 

r s = r ~ + , (  I r2.1r4a I [ ,E, T4,I + fir2,1 I (1 1) 

Since the quantities in the denominators in the 
right hand side of Eq. (11) are invarients we can 
rearrange the terms and obtain the simpler form 

r s  = r l  + Arz,lr4,1 +/./144,1 '~ ~'T2,1 (12) 

where 

I l?2,1r4a I '  b t= l  ~'r,a-I- ~'rza I 

r =  
I ~4,1+ ~'2,1 I 

The corresponding velocity and acceleration vec- 
tors of  particle 3 are estimated using the first and 
second time differentiations of Eq. (12) respec- 
tively which result in the following forms 

rs = r l  q- A (~z,,r4.1 q- ~u,zr4,1) q-/~4,1 -b rlaz,1 (13) 

rs=Pl  + A (lrZ,lP4,1 +rz,lr4.1 -{-2~z,zl~4,1) 
(14) 

+/Aqa + ~2a 
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Equation (14) expresses the unknown accelera- 

tion vector of particle 3 in terms of the accelera- 

tion vectors of  the other primary particles which 

eliminates the constraint Eqs. (4.4) to (4.7). 

Equation (14) can be put in the more convenient 

form 

[73 = ( 1 --/Z-- Z'-b/llr4,z) r l  
(15) 

+ ( r -  Af4,,) i'2+ (/z + Afz,1) i~4 

Substituting the derived acceleration vector of 

particle 3 from Eq. (15) into Eqs. (5) and (6), 

then the differential equations of motion take the 

modified form 

R = { ~ + rn3 ( l - / z -  r + Ae4,2) )i'~ 

+{  f i b +  ma(z'-/~4,~) }Pz (16) 

G1 ={  A1 +A3 ( 1 - / 1 -  r + Af4,2) } r l  

+{ A z + A s ( r - A f 4 , 3  }i'2 (17) 

Equations (16) and (17) in addition to the con- 

straint Eqs. (4.1) to (4.3) represent the equations 

of motion of a single floating rigid body in 

spatial motion. It can be solved at every time 

step to determine the unknown acceleration com- 

ponents of particles 1, 2, and 4. Consequently, 

Eq. (15) can be used to determine the accelera- 

tion components of particle 3. The acceleration 

components of the particles are integrated nu- 

merically, knowing their Cartesian coordinates 

and velocities at a certain time step, to determine 

the positions and velocities for the next time step. 

The translational motion of the particles deter- 

mines completely the translational and rotational 

motion of the rigid body. If the rigid body is 

rotating about a fixed point, then particle 1 may 

be located at the centre of this joint.  In this case, 

Eq. (17) and Eqs. (4.1) to (4.3) are used to solve 

for the unknown Cartesian accelerations of  par- 

ticles 2 and 4. Equation (16) can be solved to 

determine the unknown reaction forces at the 

joint. 
If the rigid body is rotating about a fixed axis, 

then particles 1 and 2 can be located along the 

axis of the joint  to define its direction. The pro- 
jection of  the moments in Eq. (17) along the 

direction of the axis of the revolute joint  in 

addition to the constraint Eqs. (4.2) and (4.3) 

can be used to determine the unknown accelera- 

tion vector of particle 4. Then, Eq. (16) may be 

used to get the reactions at the axis of the revolute 

joint. 

2.4 Equat ions  of  motion of  a ser ia l  chain  of  

rigid bodies 

Figure 3 shows a serial chain of N rigid bodies 

with the equivalent system of (3N-bl )  particles 

where connected particles are unified from both 

bodies. For  the last body "N" in the chain, the 

equations of motion are derived in a similar way 

as Eq. (17) and Eqs. (4.1) to (4.3) of a single 

rigid body. The angular momentum equation 

takes the form 

G 3 N - 2 :  { A 3 N - 2 - [ -  A3# ( I - a~ - Z'N -[-/~,v f 3~v+ 1,3~/-1) }r3N-~ 

+{ A3~-I+ A3N(rN--k~t3N+I,3N-2) }~SN-1 (18) 
q- { A3~+1+ A3~ (a~ + ~Nf3N-1,3N-2) r3N+l 

+2AN/hN~3~-I,3N-~3N+I,3~-2 

where 

3N+I  I 
A3N : m3NrSN,3N-2 ~- i=~-- 1 4  ~3N, ir f,3N--2 

i~3N 

SN+I I 
m3N = m3N ~- i=3~N_2~ m3N, i 

i~3N 

where GsN-z is the sum of the moments of  the 

external forces and force couples acting on body 

N with respect to the location of particle 3N--2.  

The acceleration equations of the distance con- 

straint between primary particles belonging to 

body N are given as 

T " T '"  
r3N-2,3N-lrsN-2 ~- rSN-I,SN-2rsN-1 (19.1) 

-T  
: - -  r a N -  1 , 3 N - 2 r 3 N -  1 ,3N-2 

3N+I 

3N- 

1 

Fig. 3 Serial chain of N rigid bodies with an equi- 
valent system of primary particles 
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2" . .  2" . ,  
rs~v-z.aJv+ ira Jr.2 + raN+ 1,3~v-arsN+l (19.2) 

.2" = -- rss+ I,SN-2raN+ 1o3N-2 

2" . .  _~_ T . -  
raN--LaN+]raN-~ rs~+Z.aN-~rs~+~ (19.3) 

" T  
= - -  r 3 ~ +  Ls~v- irs,~+ l,aN- i 

Addition of one more body in the chain Icads 

to the inclusion of an angular momentum vector 

cquation that takes into consideration the con- 

tributions of all the ascending bodies in the chain 

together with three distance constraint equations 

bctwccn thc particlcs belonging to this body. 

Thcsc six scalar equations are appended to the 

equations of motion derived for the leading 

bodies in the chain. For body j, the appended 

equations of motion take the form 

N 

Ga#-,= ~=~{ As,-a +a3, (I -/~,- r, +&fa,,+,,,,-,)}h,-, 

+{ A,,-, +As, (a-&h,+~.s,-,) }h,-1 (20) 
+ { A,,+, + A,, (/~, + &h,-L,,-,) }is,+, 

+ 2a,Aa,}s,-~,a,-zl=S,+lak-a 

where 

3k+~ 1 
A3~ = ma~lrs~.3.+-2 + i=~_~-  ma~,~.r ;.s~-a 

i--*3k 

3 h + l  I 

~'~3k = r u s k  Of- ~, ,  7 r u s k  i 
i = 3 k - - 2  ~ 
i#3k 

T "- T , -  
rsj-2.3./- 1]L'3./-2 "°t- r a j -  1,3./- 21L'sj- 1 (21.1 ) 

. T  
= - -  r 3 j -  1 , 3 J -  2 r a j -  1 , 3 j -  2 

T " T . '  
rsj-a.s~+ ~rsj.-= + rs~+ ~.a~- 2raj+ 1 ~/2 i. 2 

/ 

L 3 J - 2  

2" - .  2" . .  
r3j- LsJ+ ira,- l + r3~.+ Lsa- trsj+ 1 ~f 21.3 

1 • 2" 1 ~ = - -  r 3 j + l , 3 j -  1 3 J +  1 , 3 J -  1 

where 

h j  = ( 1 - / ~ -  r +A~sj+l,a,-~) ~s;-2 

71- ( r - - / ~ 3 . / + l , 3 j - 2 )  r 3 j - l l  L ( / - L ' J f - a r 3 £ - l . 3 j - 2 )  r 3 J + l  

according to Eq. (15) has been used. If body "j" 

is the floating base body in the chain then, three 

linear momentum equations, similar to Eq. (16), 

are required to solve for the unknown accelera- 

tion components of particle 1. These linear mo- 

mentum equations equate the sum of the external 

forces acting on all the bodies in the chain to the 

time rate of change of the vectors of linear 

momentum of all the equivalent particles that 

replace the chain which take the form 

?4 

+ { m3,-1 + mak ( rk-/l*~ak+l,Sk-2) }YS*-I (22) 

+ { ~,,+,+ ~s, (/~, +a,hk-,,,~-2) }i',,÷ 
+ 2ll*mst, rsk- l,Sk-af Sk+ l,Sk-a 

where 

3 k + l  l 

rusk = rusk + i=~2 To.__ msk,~ 
i=sk 

If body j is connected to body j - I  by a revolute 

joint, then we take the projection of all the 

moment vectors in Eq. (20) along the axis of the 

joint which is defined by two particles from both 

bodies that are commonly located on it. Two 

additional distance constraints, that fix the dis- 

tances between the remaining fourth particle and 

the other two particles along the axis of the joint, 

together with the angular momentum equation 

can be used to solve for the acceleration vector of 

the fourth particle on body j. 

In general, for a serial chain of N bodies, an 

equivalent system of ( 3 N + I )  primary particles 

and 6N secondary particles is first constructed. 

Then, by eliminating all the secondary particles 

and N primary particles, we are left with 2 N +  1 

particles and consequently, 6 N + 3  unknown ac- 

celeration components. To solve for these un- 

knowns, 3N angular momentum equations can be 

generated recursively along the chain together 

with 3N distance constraints between the particles 

located on each body, in case of all are spherical 

joints. In the case of a revolute joint, one angular 

momentum scalar equation and two distance con- 

straints are used. Finally, three linear momentum 

equations can be used to solve for the unknown 

acceleration components of particle l if body l is 

floating or for the unknown reaction forces if 

there is a fixation at point 1. 

In the case of an open-chain system or closed- 

chain system, it can be transformed to a system 

of serial chains by cutting suitable joints and 

consequently cut-joint constraints are introduced. 

In the case of a closed-chain system, the cut- 

joints avoids the need to introduce loop closure 

equations and the corresponding loop closure 

constraint forces and then allows the use of the 

laws of momentum/moment of momentum with 
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respect to a joint axis. Equivalent particles are 

conveniently chosen to locate at the positions of 

the connection joints and in terms of their Car- 

tesian coordinates the cut-joint constraint equa- 

tions are easily formulated. The cut-joints kine- 

matic constraints substitute for the unknown 

cut-joints constraint reaction forces that appear 

explicitly in the linear and angular momentum 

equations generated recursively along the separat- 

ed serial chains. 

3. Dynamic Analysis of the Multi- 
Link Five-Point Suspension 

Figure 4(a) presents a quarter car with five- 

point suspension system, This suspension is usu- 

ally used for driven rear axles of current produc- 

tion of Mercedes-Benz cars, Mazda 929, some 

BMW and Toyota Supra cars. The mechanical 

~ *  O O' 1 

I Bo4~ No De~n~lea 
/ I Main chus#l~ 2 Lower link 3 Knuckle Z W'~t~T 

M,I~%Je ~% hnL, 
(a) With body numbers, Joint types, and joint 

velocity variables 

~ f  r 

i,."; 9 ..... • :; 

" ' 03 i "?~e ..... i i ,' :; 

! a-i-- 

' ---r~-.,.o6~.. ........ 
/ 

/ 
(b) Withthe primary particles and the body attached 

coordinate frames 

Fig. 4 Schematic view of the multi-link five-point 
suspension 

system consists of a main chassis, a five-point sus- 

pension sub-system, a steering rod, and a wheel. 

A suspension spring and a shock absorber are 

included. The system constitutes four closed loops 

due to the four massless links connecting the 

chassis to the Knuckle. The chassis is constrained 

to move vertically which can be modelled as a 

translational joint  with axis vertical. The wheel 

is analytically modelled in the radial direction 

by an equivalent linear translational spring sys- 

tem which also has damping characteristics. The 

system has three degrees of freedom. The chassis 

has one degree of freedom due to the vertical 

motion and the wheel has one degree of freedom 

corresponding to the rolling motion. The five- 

point suspension has one degree of freedom. The 

inertia characteristics of the rigid bodies (masse 

and inertia) are presented in Table A I in Ap- 

pendix A. It is clear that the lower link has zero 

mass and, in turn, zero inertia but it will recieve 

contribution from adjacent bodies at the con- 

necting joints when constructing the equivalent 

system of particles. The characteristics of the 

suspension springs and dampers and the wheel 

are presented in Table A2 and A3, respectively. 

Table AI Description of the rigid bodies 

Body 

1 
2 
3 
4 

Mass Inertia (kg.m 2) 
Description (kg) ~ .  r/~. ~ .  1/~.~. ~ 

Main chassis 456.0 570.0, 2320.0, 2715.0, 0.0, 0.0, 0.0 
Lower link 0.0 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 
Knuckle 11.8 0.5, 0.5, 0.5, 0.0, 0.0, 0.0 
Wheel 25.0 1.0, 2.0, 1.0, 0.0, 0.0, 0.0 

Table A2 The characteristics of the suspension 
springs and dampers 

Connected K D lo 
No. 

bodies (N/m) (N sec/m) (m) 

I (I,2) 5.11E+04 0.00E +00 0.3512 
2 (1,2) 0.0E +00 !.6E+03 0.0 

Table A3 The characteristics of the wheels 

Radius 0.35 m 
Stiffness 6.0E+06 Nm 
Damping coefficient i.0E+04 N sec/m 
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Each rigid body is replaced by its equivalent 

system of  particles, as shown in Fig. 4(b) .  The 

main chassis is replaced with the four-pr imary 

particles representation (particles 1, 2, 3, and 4) 

and the knuckle is replaced by the four-pr imary 

particles representation (particles 6, 7, 8, and 9). 

The steering rod is modelled with a system of two 

primary particles (3 and 10) and the wheel axis is 

represented with particles (11 and 12). Locating 

the primary particles belonging to adjacent bodies 

together at the connection joints reduces the total 

number of particles replacing the whole system 

and leads to the automatic elimination of  the 

kinematic constraints at these joints. The closed 

loop system can be reduced to open- loop  system 

by modelling the four massless links, as shown in 

Fig. 4(a) ,  as four spherical-spherical joints and 

then, cut these joints. Consequently, the system is 

reduced to a serial branch connecting the chassis 

to the knuckle through the lower link. An overall 

equivalent system of 12 particles is constructed "~o 

as shown in Fig. 4(b).  Cutting the four spherical-  

spherical joints results in cut- joint  constraint 

equations that are expressed in terms of  the Car- 

tesian coordinates of  the particles. The cut- joint  ~E 
constraints have the form ,~ 

( r 2 - r s )  r (r~--rs) 2 _ - d~_,8-O (23a) 

( r s -  r,0) r ( r s - r l 0 )  - d~xo = 0  (23b) 

( r4 - - r , )  r ( r , - - rT)  --  d2r = 0  (23c) 
Fig. 5 

(rs--rg) r (rs--rg) --  d~9 = 0  (23d) 

where di.~ is the distance between particle i and j .  
~- 100 

The equations of motion are generated recursively 
g 

along the serial branch as discussed in Sec. 4 with .~, 80 

the introduction of  the cut- joint  constraints. 
60 The equations of motion are used to simulate 

the free response of  the system from the rest "6 40 
g 

position. Figure 5 and 6 presents, respectively, the 

time variation of the vertical displacement and _~ 20 
acceleration of the center of the chassis. The 

main chassis is accelerated downward due to the ~ 0 

gravitational forces. Then, it undergoes a damp- ~ -20' 

ed oscillatory motion controlled by the spring- 

damper-actuator  elements forces and the wheel 
compression forces up to the steady state. It 

should be noted that for the absolute coordinate 

formulation, a system of 22+  15 differential equa- 

tions of motion plus algebraic equations of 

kinemtaic constraints, respectively is constructed. 

Thus a resulting system of 37 differential-alge- 

braic equations should be solved at every time 

step to determine the unknown accelerations 

and reaction forces. In the present formulation, 

a resulting system 27 differential-algebraic equa- 

tions (5 differential equations of  motion + 22 

geometric constraints) is constructed. The reduc- 

tion in the number of differential equations and, 

in turn, the number of integration variables ob- 

tained using the present formulation is considered 

as an advantage over the absolute coordinate 
formulation. 

It should be pointed out that in this for- 

mulation, the kinematic constraints due to some 

0 

- 0 , 1 ~  

-0,2 

-0,3 

-0,5 

-0,6 

--0,7 
0 1 2 3 4 5 

Time (s) 
The time variation of the vertical displace- 
ment of the chassis 

0 1 2 3 4 
Time (s) 

Fig. 6 The time variation of the vertical acceleration 
of the chassis 
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common types of kinematic joints (e.g. revolute 

or spherical joints) can be automatically eli- 

minated by properly locating the equivalent 

particles. The remaining kinematic constraints 

along with the geometric constraints are, in gen- 

eral, either linear or quadratic in the Cartesian 

coordinates of the particles. Therefore, the co- 

efficients of their Jacobian matrix are constants or 

linear in the rectangular Cartesian coordinates. 

Where as in the formulation based on the relative 

coordinates, the constraint equations are derived 

based on loop closure equations which have the 

disadvantage that they do not directly determine 

the positions of the links and points of interest 

which makes the establishment of the dynamic 

problem more difficult. Also, the resulting con- 

straint equations are highly nonlinear and con- 

tain complex circular functions. The absence of 

these circular functions in the point coordinate 

formulation leads to faster convergence and 

better accuracy. Furthermore, preprocessing the 

mechanism by the topological graph theory is 

not necessary as it would be the case with loop 

constraints. 

Also, in comparison with the absolute coor- 

dinates formulation, the manual work of the local 

axes attachment and local coordinates evaluation 

as well as the use of the rotational variables and 

the rotation matrices in the absolute coordinate 

formulation are not required in the point coor- 

dinate formulation. This leads to fully compu- 

terized analysis and accounts for a reduction in 

the computational time and memory storage. In 

addition to that, the constraint equations take 

much simpler forms as compared with the abso- 

lute coordinates. 

The elimination of the rotational coordinates, 

angular velocities and angular accelerations in the 

presented formulation, leads to possible savings 

in computation time when this procedure is com- 

pared against the absolute or relative coordinate 

formulation. It has been determined that numeri- 

cal computations associated with rotational trans- 

formation matrices and their corresponding coor- 

dinate transformations between reference frames 

is time consuming and, therefore, if these com- 

putations are avoided, more efficient codes may 

be developed (Attia, 1993 ; Nikravesh and Affifi, 

1994). The elimination of rotational coordinates 

can also be found very beneficial in design sensi- 

tivity analysis of multibody systems. In most 

procedures for design sensitivity analysis, leading 

to an optimal design process, the derivatives of 

certain functions with respect to a set of design 

parameters are required. Analytical evaluation 

of these derivatives are much simpler if the rota- 

tional coordinates are not present and if we only 

deal with translational coordinates. 

Some practical applications of multibody 

dynamics require one or more bodies in the sys- 

tem to be described as deformable in order to 

obtain a more realistic dynamic response (Attia, 

1993; Nikravesh and Affifi, 1994). Deformable 

bodies are normally modeled by the finite element 

technique. Assume that the deformable body is 

connected to a rigid body described by a set of 

particles. Then, one or more particles of the rigid 

body can coincide with one or more nodes of the 

deformable body in order to describe the kine- 

matic joint  between the two bodies. This is a 

much simpler process that when the rigid body is 

described by a set of translational and rotational 

coordinates. 

Also, since we are dealing in this formulation 

with a system of particles instead of rigid bodies, 

only the laws of particle dynamics are utilized 

in generating the equations of motion of the 

mechanical system. This makes the formulation 

much simpler than the other dynamic formula- 

tions which use the rigid body dynamical equa- 

tions of motion both translational and rota- 

tional. In summary, the methodologies presented 

in this paper have many interesting characteris- 

tics which may be found useful in some appli- 

cations. These methodologies can be combined 

with other methods to develop even more effi- 

cient, accurate, and flexible procedures. It should 

be noted that there is no single multibody for- 

mulation to be considered as the best formula- 

tion for general multibody dynamics. Each for- 

mulation has its own unique or common features 

and, therefore, selected features should be adopted 

to our advantages (Attia, 1993; Nikravesh and 

A ffifi, 1994). 
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Since the current trend in multibody dynamics 

formulation is towards recursive formulations in- 

stead of matrix formulations due to its efficiency 

(De Jalon et al., 1994), the presented formula- 

tion has an advantage over the matrix formula- 

tion presented in (Nikravesh and Affifi, 1994). 

Also, the elimination of the necessity of  the 

transformation to relative joint  variables and the 

distribution of  the external forces and couples 

acting on the bodies over the particles is consi- 

dered as an addit ional advantage for the present 

formulation over the matrix formulation. 

4. Conclusion 

In the present work, a recursive formulation 

for the spatial motion of a system of rigid bodies 

is presented. The concepts of  linear and angular 

momenta are used to formulate the rigid body 

dynamical equations of motion which are ex- 

pressed in terms of the rectangular Cartesian 

coordinates of a dynamically equivalent con- 

strained system of particles. This groups the 

advantages of  the automatic elimination of the 

unknown internal constraint forces, the absence 

of  any rotational coordinates in addition to the 

rotational transformation matrices, and the eli- 

mination of  the necessity to distribute the ex- 

ternal forces and force couples over the particles. 

Also, the formulation can be considered as a 

natural extension to the finite element represen- 

tation for a deformable body. Some useful geo- 

metric relations are used which result in a re- 

duced system of differential-algebraic equations. 

The formulation can be applied to open and /o r  

closed-chain with the common types of kine- 

matic joints and may be found useful in some 

applications. The formulation is applied to simu- 

late the dynamic response of  a mult i- l ink five- 

point suspension. 
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